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Abstract

In recent years there has been a great interest in the study of
methods for computing the solution of an initial value problem numerically.
Most methods used form a difference analog to the differential equation and
use the solution of the difference analog as an approximation for the solution
of the differential equation., Most of the work done to date is concerned with
estimating the difference between the true solution and the computed solution
on a finite interval. Such problems as determining stability properties of
. the differential equation or finding a periodic solution are intrinsically
involved with unbounded intervals. When a difference analog is used in these
cases, the question becomes not one of how accurate is the approximation on a
finite interval but do the solutions of the difference analog display the
same properties as do the solutions of the differential equation.

The questions concerning stability properties of the difference
analog led to research which is reported in a paper by the author entitled
"Some Stability Theorems for Difference Equations". This paper has been sub-
mitted to the SIAM Journal on Numerical Analysis for publicatién. The theorems
in this paper have application to other areas of Numerical Analysis, notably
iteration‘theory, and to sampled data control systems.

In this thesis, the problem of finding periodic, almost periodic,
and bounded soiutions of a difference analog to a differentiél equafion are
considered. In the introduction, several examples are given to show how the
behavior of a difference analog can be different from that of the differential
equation. The problem of periodic §olutions of the difference analog is dis-

cussed and, in order to have the period depend continuously on the parameters®
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in the difference analog, the solutions must be extended from the infegers to
the reals. Definitions of and theorems related to solutions on the reals are
given.

The properties of solutions of Linear and Affine difference equations
are discussed and a noncritical case is treated in some detail, The noncritical
case considered is when the linear part has a constant matrix which has no
eigenvalues on the unit circle., A theorem is presented concerning the exist-
ence of a pgriodic, almost periodic, or bounded solution of & noncritical
difference equation when the nonlinearity has a small parameter.

The simplest critical case, where the matrix of the linear part is

the identity matrix, is discussed and a theorem is given concerning the exist-

ence of a T-periodic solution where T is a rational number. Finally, an
averaging method and an invariant manifold method are given, each with an

application which proves that, under certain conditions, certain difference
analogs do display the same behavior as the corresponding differential equation. N
The Cfude Euler analog of % = €f(t,x) has an almost periodic solution for € i
gnd h small enough.under the' same conditions which insure the existence of

an almost periodic solution of the differential equation. The central differ-
ence analog to the Van der Pol equation % + 2€i(x2-l)+x = 0 has an invariant

curve.of radius approximately 2 -for € >0 and smll.




INTRODUCTION.

Consider the initial value problem given in (1) where x and I

X = £(t,x) x(to) =X (1)

f(t,x) are n-vectors (n-dimensional vectors), t 1s a real number called
time and % = dx/dt. In recent years there has been a great interest in the
study of methods for computing the solution to (l)vnﬁme;ically [1,2]. .Mbst
nunerical methods divide time into increments with spacing h such that

t, = t°+ kh and form the difference analog (2).

x(ty,q) = Bt x(6,),x(t,_1),e . px(t, )s5h) (2)

= sks
xt) =% , OSKSN

The solution to the difference equation (2) is then taken as an approximatiop
to the solution of (1). However, most of the work to date is concerned with
computing the solution on a finite interval, say for ts st= tl. Such
problems as determining stability properties of (1) or finding periodic solu-
tions of (1) are intrinsically involved with the unbounded intervals

to St <o or -»<t <o When the difference analog (2) is used in these

cases, the question becomes not one of how accurate is the approximation on *

i|



a finite interval but do the solutions of (2) display the same properties

as the solutions of (1)?

Several very simple cases will be covered here as a partial answer

to this question. Consider first the difference equation (3).

x(k+1) = Ax(k) (3)
where
a a x. (k)
Ao 12 (k) = | *
81 %2 x5(k)

If the eigenvalues of the real matrix A are A, and Ay Xl £ LY then

- all solutions of (3) are of the form

k k
x(k) = ch; + dh,

where ¢ and 4@ are constant 2.vectors. The origin x(k) = 0 1is also a
solution. The behavior of the solutions near the origin is completely deter-

mined by the values of XA, and A, If |A)] <1 and |A,| <1, then all

1

solutions approach the origin as k - », If Xl and A, are real, then the

origin is said to be a stable node (SN). If M end A,

the origin is said to be a stable focus (SF). If |[Ar,] =]|A

are complex, then

ol =1, then all

1

solutions remain bounded and the 6rigin is said to be a center (C). If
|k1| >1 and |x2| > 1, then all solutions become unbounded as k -, If

A, and A, are‘real, the origin is said to be an unstable node (UN) and if




the eigenvalues are complex, the origin is said to be an unstable focus (UF).

if |x1| >1 and || <1, then the origin is said to be a saddle point

(SP). The terms stable node, stable focus, center, etc., come from differ-
ential equations and are used here because the behavior of the solutions of
the difference equation is very similar to the behavior of solutions of a
differential equation.
For example, consider the difference equation (3) when the matrix
A 1is given by |
) 1

A= . | . - _(33)

-1 2 cos w

The eigenvalues of A are A, = e ang Ay = e'iaL and so the origin is

a center., Consider the functional V(x)

-2 2
V(x) =x; -2 éos ® Xy Xo+ Xy .

‘We see immediately that V(x(k+1l)) = V(x(k)) for any solution x(k) and

hence that any solution remains on a level surface of V. A level surface

of V is an ellipse and hence the name center for this type of behavior.
The eigenvalues of A depend entirely on two numbers, B =

+ % trace (A) = + %(all+ a22) aﬁd c = det (A) = 8,,850-8158;. Figure 1

is a graph showing the various regions of behavior in the B,C plane, It

should be noted that, on the line B° = C, A, = A

bility of A not having simple elementary divisors. However, since this

and there is the possi-

line is always a transition line between two different types of behavior,

this raises no sérious question at’ this time.




CODE;

B = 2 trace(A)

C = det(A)

SN = Stable Node

SF = Stable Focus
Cen = Center
UN = Unstable Node
UF = Unstable Focus
8P = Saddle Point

Figure 1
Regions of Behavior for x(k+l) = Ax(k)
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the differential equation (L) are studied.

X+2dx +x =0 : . _(h)

In most cases, the differential equation (4) will be written in the vector

form of (4').
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The behavior of the solutions of (4) depend only on the parameter d. The
origin is a center if d = 0, a stable focus for 0 <d <1 and a stable
node for 1 <d <=, The origin is an unstable focﬁs for -1 <d<0 and

an unstable node for -o» <d < -1, All the differengé analogs will have an

additional parameter, the spacing h, and the regions of the d,h plane for

each type of behaviof for the difference analog should be compared to this
1 ideal. The variations will be noted.
The first numerical method to be considered is the central dif-
ference analog where the deri§atives of x in (L) are replaced by théir

central difference approximations.
L (x(t,,)-2x(t,)ex(t, )+ oo (x(t,,)-x(t,_))4x(t) =0
) K+l k k-1’/" 2h k+1/ "\ Pkal k ‘

Letting yl(k) = x(tk l) and yz(k) = x(tk), this becomes the difference ,

_equaﬁion (5)

. —

Using the results shown in Figure 1, several difference analogs of




y(k+1) = Ay(k)

| ¥, (k)
y(k) = A=
YQ( k)
The parameters are
2
=1 2-h and c _1-hd

1+hd " 1+hd

The regions of behavior are shown in Figure 2. Notice that for h > 2, the
behavior is always that of a saddle point, & behavior which does not aﬁ all
resemble any of the behaviors of solutions of the differential equation. |
However, the main region of interest is for h very small, Figure 2 shows
the behavior of solutions of (5) for large. h because this givés a clearer
picture of what happens for small h.
For small h, we notice that the origin is a center when 4 =0,

is stable when 4 > 0 and unstable when d < 0 --- in agreement with the
origin df the differential equation. However, note that the transition from
Focal behavior to Nodel behavior does not occur at d = *1 but on the ellibse
hd2+ h2 = 4, Still, from this point of view, the central difference analog
is a good method for computing a solution to (4) numerically. l

| The next method considéred is the Crude Euler method [3]. This

method uses equation (4') and is described by the difference equation (5)
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h = Step size
d = Damping coefficient
SN = Stable Node
SF = Stable Focus
Cen = Center
UN = Unstable Node
UF = Unstable Focus
8P =

Saddle Point

Regions of Behavior - Central Difference Analog

SN

SP
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Figure 2
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xl(tk) 1
¥(k) = A
x2(tk) : -h

The parameters are B = 1-hd and C = 1-2hd+h2. The regions of behavior are
shown in Figure 3. Notice that, for h > 2, the behavior is always unstable.
Also,. for small h and d = 0, the behavior is not that of a center but

that of an unstable focus. If h is small and O < d < 3h, the behavior

of the difference equation is that of an unstable focus instead of a stable
focus. TFor large d, it is possible to get unstable behavior of the dif-
ference equation by having h 1large ehough to be in the saddle point region

even though it is still small, In order to get the desired behavior in this

case, we must take h much smaller than 2d if d 4is small and much smal-

ler than 1/d if d 1is large. Notice that, for ‘d = 0, the Crude Euler
method behaves like an unstable focus for any h > 0 and not like the center
for the differential equation, From this point of view, this method is not
‘very acceptable. However, other considerations must be used in passing
Judgemént on any given method.

In the Corrected Euler method [3], the value of y(k+l) obtained
from the Crude Euler method is used as a first approximation to the solution
at tk+l‘

of integration to obtdin a second approximation which is used as the numeric

This first approximation is used along with the Trapezpidal rule

solution: This difference analog of (4') is given by (5) where
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h = Step size
d = Damping coefficient : uw~N
SN = Stable Node
SF = Stable Focus'
Cen = Center
UN = Unstable Node 2F
UF = Unstable Focus
8P = Saddle Point

Figure 3
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Regions of Behavior - Crude Euler Method




x, () 1-in h(1-hd)
y(k) = A =

2
x,(ty) -h(1-hd) 1-ih

-2hd(1-hd)

The parameters are B = 1-%h2-hc(l-hc) and C = (1-%h2)2-2hc(1-hc)(1-%h2)+
ha(l-hc)z. The regions of behavior are shown in Figure 4., Notice that,
while the line of centers is no longer a straight 1ine'and comes much closer
fo the h-axis, this figure is not much different from Figure 3 for_tﬁe

Crude Euler method and that the same comments apply.

The final method discussed here is the Iterated Euler method (3],
sometimes called the Modified Fuler method. In this method, the trapezoidal
rule of integration is used to obtain second, third, etc., approximations to
‘the solution at t = ¢t until these iterations converge. The difference.

k+1l
enalog of (4') is given by equation (5) where

% (t.) habhd-he hn
1''k 2 L 2
v(k) = A = L+khd+h +hhd+h2 | (9)
hh h_lhd-h
xp(ty) - e z
Labhd+h L+bhda+h
'The parameters are
B bon? - (h+h2)2-16h2d2
= — and C = 53 .
* babnd+n } (4+khd+n=)

The regions of behavior are shown in Figure 5. The only discrepancy between

this figure and the ideal figure is the saddle point region where there should

.be an unstable node. However, for d <-1, if we take h much smaller than
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CODE: / 2 3
h = Step size
d = Damping coefficient ur :
SN = Stable Node ' ' .
SF = Stable Focus -/ |- ' '
Cen = Center
- UN = Unstable Node
UF = Unstable Focus UN
8P = Saddle Point
-2+
Figure U4

Reglons of Behavior - Corrected Euler Method
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-l/d, then the behavior will be correctly that of an unstable node.

The significance of these examples is that, in most cases, the
behavior of solutions of a difference analog to a differential équation is
not the same as the behavior of solutions of the differential equation. In
the'case of a moré general differential equation, this variation of behavior
can be detected only by computing the solution twice, once with h = ho and

1

once with a considerably different h, say 'h = 2h, or h = %5

behavior of the solutions does not change drastically from one computed

h If the

o
solution to another, then one may assume that the behavior of solutions of
the difference analog and of the differential equation are the same, If the
behavior does change drastically, even if the basic type of behavior doesn't
change, then one must assume that the behavior of solutions of the difference
analog and of the differential équation are different and the solution shoulq
be recomputed with another value of h. For example, if d = 0 in equation
(4) and we were using the Crude Euler method to compute a solution, we would

note that the computed solution is spiralling outward like an unstable focus.

'When the solutioﬁ is recomputed with half the original spacing, we still see

the outward spiral but its rate of spiralling out will be reduced by about
half, leading to the conclusion that the behavior of the differential equation
is not that of an unstable focus,

A greater analysis of the center of a difference equation is in
order. Consider the difference equation (3) where the matrix A is as given
in (3a). This happens to be the matrix A given for the central difference
analog in equation (6) withd =0 and 2 cos w = 2-h?, but we shall use it
j

in the form given in (3) and (3a). As noted before, all solutions remain on

B 2
a level surface of V(x) = x;-2 cos X Xo+ xg. One such level surface, for

|




®=2r/9 and x,(0) = x,(0) = 1, is the ellipse shown in Figure 6. The tic-
marks on the ellipse show the points of the solution starting at xl(o) = x5(0)
= 1, Since x(9) = x(0), this solution is periodic with period 9. Any point
on this ellipse can be used as the starting point x(0) and will lead to a
9-periodic solution.

Suppose now that was changed'slightly, say from o = 2v/9 =
lom/45 to w = 10m/46. The ellipse V(x) = constant will change very
slightly but each solution will now take on L6 distinet points on the ellipse
instead of 9 and we will have x(46) = x(0), leading us to say that the solu-
tion is W46-periodic. A change in the parameter w of W/267 = ,0015  changes

the period by a factor of 5. In fact, if w is an irrational multiple of T,

there will not be any integer k such that x(k) = x(0) and so the solution

is not periodic. Yet, each point x(k) of the soluﬁion will be on the level
surface of V(x) = V(x(0)) and the points x(k) will move around the ellipse
in the same manner as shown in Figure 6,
iw -iw
Assume that the eigenvalues of A are e and e - where

l® # e 1% Then each solution of (3) can be written as in (10)

x(k) = a cos ak + b sin ak (10)

where a and b are constant 2-vectors which are completely determined by
x(0). Letting k = 0, we get a = x(0). We determine b from the equation

x(1) = Ax(0).

_ (A-cos w I)
b = e x(0)

Since eiw-f ~io

e, sinw #£0 eand b is uniquely determined.




Figure 6

2 : : 2
A Level Surface of V(x) = x,~2cos (2#/9)xlx2+ X,




Now, x(k) = x(0) only when cos uk = 1, i.e., when ak is some
integer multiple of 2w, Then ® = 27/9, then 9w = 2r and the solution is
9-periodic. Whén w = 10m/46, then Ubw = 10m and the solution is Lb-periodic.
Notice that, in both cases, the period k is the lowest integer such that
x(k) - x(0). When ® 1is an irrational multiple of 2 , then wk is never
equal to an integer multiple of 27 and the solution is not periodic., Yet
equation (10) gives the formula for a 2r/w-periodic function. Why can't we
say that the solution (10) is 2m/w-periodic for any «? If we could, then
the period would be continuous in the parameter o (except whgn eiw = e-ins.

The problem arises because the solution is defined only on the
integers. What is meant by the statement, "x is T-periodic" when x is
defined only on the integers and T is not an integer? Since x(k+T) is
not defined whenever k 1is an integer and T is not, we cannot say x is
T-periodic whenever x(k+T) = x(k). If we could define equation (10) as a
solution of (3) for‘all real k, then we could say x is I-periodic whenever
x(k+T) = x(k). However, (10) is a solution of (3) not only for a and b

constent 2-vectors, but also for a and b any l-periodic functions, as in

(10').
x(k) = a(k) cos uk + b(k) sin uk (10')

It is easily confirmed by substitution tﬁat a and b are no longer determined
by x(0) but that x(k) is arbitrary for 0 £ k <1, If x(k) is defined

(as initial value) for 0 s k < 1, the a(k) (hence b(k)) is completely deter-
mined and (10') represents the solution with the initial values. Notice

that, by defining the initial values for the solution on an interval
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instead of at a point, we get the solution defined for all real k instead
of only on the integers and we can logically talk about T-periodic solutions

|

for non-integer T. In (10') the vector b(k) is given in terms of a(k) by

(A-cos w I)

b(k) = sin w

a( k) 0sk<1l .,
Just what does this "new" definition of a solution mean in terms
of the simple difference equation (3)? Two different solutions of (3) for
w = 27/9 are shown in Figure 7. The solid line is the solution which happens

to have a(k) and b(k) constant and the dotted line has a(k) and b(k)

non-constant. Notice that, on the integers (marked by the tics), both solu-

tions look the same and that both solutions are 9-periodic.

This definition of & solution of a difference equation ié formalized
here., To emphasis that the solution is defined on some real interval and not
on. only the integers, t is used as the independent variable instead of k.
The difference equation under gonsideration is given by equation (11) where

each x and f(t,x) is in E", an n-dimensional vector space,
x(t+1) = £(t,x(t)) ‘ (11)

DEFINITION: A function x(t) = x(t;t ,x)) where t and t_  are real numbers,
t, st <t +T, some T z 1, and X, is a n-vector valued func-

tion on ([0,1), is called a solution of the difference equation

(11) if, for some T 2 1,

a) x(t) = xo(t-tq) for t st<t +1




Figure 7
~ Two Solutions of x(k+1) = Ax(k)
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b) x(t+l) = £(t,x(t)) for t, St <t +T-1,

The difference between this definition of a solution and the usual definitions
is that the initial value X, is now a function instead of a vector. The
function X, defines the solution on the unit interval [to,to+ 1) and the
difference equation (11) is used to extend this definition to the right,

Notice that the‘solution is defined for all realv t in the interval
[to,to+ T) instead of restricting t-to to be an integer. Notice also that
the solution space, which is finite dimensional when the solution is defined
only on the integers, is now infinite dimensional. An initial function must
be defined instead of an initial point.

For any real number t, the integer part of t, [t), is the largest

integer n £ t. The fractional part of t, {t), is given by the formula

(t) = t-[t]. Thus, as examples, [3.14] = 3, (3.14) = .1k, [-1.62] = -2,
(-1.62) = .38, [0] =0, and. {(O) = 0. Let R bDe the real liﬂe, R' be the
positive real half-line, and En be an n-dimensional normed vector space,
For each vector x € En, denote the norm 6f x by |x]. The most common
norm used here will be the Euclidean norm |x| = (x*k)% (x* denotes the
complex conjugatemiransposé of x) but discussion will not necessarily be
limited to this norm.

For anyAfunction x mapping R (or R+) into En, let x, be the

t
function defined by xt(e) = x(t+8) for 0 =6 <1, ILet X, be a Banach

¢ € Xl,

will be L,[0,1),

space of n-vector valued functions defined on [0,1). For each x

denote the norm of x, by thl. The usual space for X

1
but discussion will not necessarily be limited to this space.
Let E be the operator defined by Ex(t) = x(t+l). Then the

‘difference equation (11) can be written in the somewhat shorter notation of




(11'). The arguments on x and Ex are understood to be t.

Ex = £(t,x) (11')

THEOREM 1 On existence and uniqueness of solutions. Suppose to and an

xtoe Xl

G(t) CE' for all t 2t such that f£(t,x) € G(t+l) for all

are given. If there are open, possibly unbounded, sets

x € G(t),Aall t 2zt and xto(e) € G(to+9) for 0s$6<1,
then the solution x(t) = x(t;to,xto) exists for all t 2 o

If f(t,x) is single valued, the solution is unique.

PROOF: The proof is by induction. The solution exists and is unique for

[to gt <t +1 (defined by the initial function xto). For each integer
| N >0, assume that the solution x(t) exists, is unique and is in G(t)

for to =£t< t°+ N. Then the difference equation (1l) gives the solution

on t %t <t +N+l By assumptions, x(t+1) = £(t,x(t)) € G(t+l) since

x(t) € 6(t) for t+N-18¢t <t +N and x(t+l) is defined and unique for

t°+ N-1=st< t°+ N. . By induction, the solution exists and is unique for all
t 2 toe

It should be noted here thatlexistence comes from the assumption
that f(t,x) € G(t+1l) for all x € G(t) and uniqueness comes from the
(trivial?) assumption that f(t,x) is single valued for all x € G(t). The
sets G(t) are open and possibly unbounded. The most common sets used in
this work are G(t) = E" for all t 2%, but discussion is not necessarily
limited to these sets., The fact that the sets are open play no vital role in

this theorem. Note also that the theorem holds for each x,  which satisfies
o

the conditions and is not limited to a specific given .xto'
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For the function f(t,x), let ft(y), where y 1is any function

from [0,1) into E", be the function defined by

ft(y)(e) = £(t+6,y(68)) , 0s6<1,
The following three theorems each show that X, € Xl under proper
conditions on Xt and f for three different choices of the space Xl.
The statements of the theorems and their proofs are almost identical. The
difference in these proofs, and the difficulty for a general Banach function

space, is the proof that, if xi € X then x. € X, for

1 1’ t 71

t =t st +1. In Theorem 2a, for example, this is not true unless x
o o 0

and Xpo+l € X
satisfies a certain boundary condition.

THEOREM 2a If, in addition to the assumptions of Theorem 1, the space X;
is the space of all continuous functions C[0,1) with the uniform
norm, ft(y) € C[0,1) for each y € C[0,1) such that.

y(6) € G(t+0), 0 £ 6 <1, and each t 2 t_, and the initial funec-

tion Xg is in C[0,1) and satisfies the boundary‘condifion
o

1im x, (8) = £(t_,x. (0))
6 -1 to ° to
then the solufion x(t) = x(t;to,xto) satisfies x.€ c[o0,1) for

each t 2t .,
(o}

PROOF: The boundary condition on xt  insures that the solution x(t) is
continuous at t =t +1. Since Xt 4] = fto(xto) is in C[0,1), the solution

is continuous for t, £t <t + 2, i.e., x.€C[0,1) for t, =t <t +l.




'xt+1

THEOREM 2b If, in addition to the assumptions of Theorem 1, the space X

If x.€ C[O,l) for t £t <t +N, then, using the fact that
=f (x ) is in C[0,1) whenever x. € C[0,1),-we get that x. € c[o, 1)

for t s t < t +N+l and the theorem is proven by induction,

1
is the space of all p-th power integrable functions Lp[o,l)

with the usual norm, some p 2 1, ft(y) € Lp[O,l) for each

Yy € Lp[O,l) such that y(6) € G(t+0), 0 £ 6 <1, and each t 2 ¢

o?

end xy € Lp[o,l), then the solution x(t) = x(t;to,xto) satisfie

2
x, € Lb[o’l) for each t 2 t_.

PROOF: We have x; € L{0,1) and xgyuy = fio(xt,) € L[0,1). Then, for

any t, to s @ < to+l,

o B totl tl o |
Ix 0 = 1 Ix(s)|"as = [ |x(s)|"as + [ |x(s)]"as
t t t +1
o
totl ot2 5 o 0
s f °Ix(s)| Pas + f | x(s)| Fas = llx, 117 + 1=, 17
o to+l o ' o

s
end hence x, € Lb[o’l) for t St <t +L
If x.c¢ Lp[o,l) for t =t <t +N, then, using the fact that
*t41
X, € Lp[o,l) for t St <t 4N+l and the theorem is proven by induction.

= ft(xt) is in Lb[o,l) whenever x, € LP[O,l), we get that

Krasnosel' skii [8] gives a necessary and sufficient condition for
ft(y) to be in Lp[o,l) for all y in Lp[o,l) such that y(08)e G(t+6),
0 =6 < 1.. This condition is given here without proof, f,(y) is in IL [0,1)
if and only if there exists a non-negative valued function a(6), 0 6 < 1

with [ a(e)Pde < w, and a non-negative constant b such that

|



f(t+0,x)| = a(6) + b|x
b

for all x € th+6), 0260 < 1. This condition is interesting for the case
where G(t+8) is unbounded because, while any linear function of x satis-
fieévit, there are large classes of non-linear functions of x which do not.
For the case where G(t+8) is bounded fér all 0, 0 £ 6 <1, this condition
reduces to the condition that | £(t+6,x)| be‘bounded for all x € G(t+6),

0s0<1l.

THEOREM 2¢ If, in ad@ition to the assumptions of Theorem 1, the space X1 is
the space of all functions of bounded variation BV[0,1) with
the usual norm, ft(y) € BV[0,1) for each y in BV[0,1) such "
thet y(6) € G(1+6), 05 6 <1, each t 2t , and x, ¢ BV[0,1), -
then the solution x(t) = x(t;to,xto) satisfies x.€ BV[0,1) for

2
each t 2 to'

PROOF: Let _V(tl,ta) be the variation of the solution x on the interval

[tl,ta). "Then, if t, 2 t

3 2’

Thus, for ¢t 2t <t 4L,

Ixgl = Ix(®)] + V(£ t42)

P x(£)] + v(t,t+1) + V(t°+1,t+1).

n

A

Ix(t)|'+_|x(toﬂ +.V(to,to+l) + |x(to+l)| + V(5 +1, b +2)

A

| x(t)] + llxton * lxg
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< .
and x € BV[O,1) for t 5t <t +1 since xto and xto+1

If x.€ BV[0,1) for ty st < t #N, then, using the fact that

are in BV[0,1).

Xy ,1° fi(xy) is in BV[0,1) whenever x,€ BV[0,1), we get that kte BV(0,1)
for to =t < t°+N+1 and the theorem is proven by induction,

The solution x(t), while written as a function of t,t ,x¢ ,
really depends only on t,t + (t-to) and xto((t-to)). Since t =
to+ (t-to) +n vhere n = [t-t ] is an integer, the value of the solution

at t_+ (t-t ) determines the solution at ¢ + (t-to) +k for k =0,12,.

«.e,n, and thus determines the solution at t.

THEOREM 3 If f(t,x) is a continuous function of x for all x € G(t)
and all t 2t and the assumptions of Theorem 1 hold, then the

solution x(t) = x(t;t_,xt ) 1is a continuous function of

xto( (t-to) ) .

PROOF: If t, s t < t_+1, then x(t) = xto((t-to)) and this is obviously
continuous in xto((t-to)). |

Now x(t+l) = £(t,x(t)), a continuous function of a continuous
function, is also continuous in xto((t-to)). Thus, the theorem is proven
by induction for all t 2 to.
THEOREM 4 Under the conditions of Theorem 1 and 2b, the solution X, con-

sidered as a function of 'xto is a continuous function of the

initial data.

The proof of this theorem is very difficult and it is given on pages r

20-26 of Krasnosel'skii [8].

In looking for periodic solutions of a difference eqﬁation, it would
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be nice to be able to use only continuous functions, i.e., functions which are

continuous in +t. However, the following example illustrates that this is not
alwvays possible,

For x(t) a real number, consider the difference equation (12),
Ex = -x2/7 (12) H |

One solution of (12) is the function x(t) given by (12')

=
o
1A

o , ||
x(t) = | (12')

t<2 ~

]
(-]
-
1A

and x(t+2) = x(t). This solution is 2-periodic so there exists a non-trivial
2-periodic solution of (12). However, this solution is not continuous in t.
Assume that there is a non-trivial 2-periodic solution of (12) which

is continuous in t. Then there is a t, such that x(tl) >0 and x(tl+l) <

1

0. Since x is continuous there is a t, such that t, <t < tl+l,x(t2) =0,

1l
and O < x(t,-€) < 1' for some € >0. Then x(ta-e+2) = -x(t2-e+1)l/3 =
(x(1:2-'e))1/9 > x(t,-€). This is a contradiction since x is 2-periodic, 1i.e.,
x(ty-€+2) = x(t,-€). Thus, any non-trivial 2-periodic solution of (12) must

be discontinuous in t. : {




LINEAR DIFFERENCE EQUATIONS

A linear difference equation is an equation of the form (13) where

A(t) 1is en n by n matrix (real or complex).
Ex = A(t)x (13)

This equation is called linear because solutions of (13) obey the superposition

rule,

IEMMA 1 Superposition rule, If xl(t) and xz(t) are any two solutions of
(13), then x(t) = al(t)xl(t) + aa(t)xa(t) is also a solution for any

scalars Q;,0, which are l-periodic.

al(t)A(t)xl(t) + Oé(t)A(t)xg(t)
al(t)xl(t+l) + aé(t)x2(t+l)

al(t+l)xl(t+1) + oé(t+l)32(t+1) = x(t+1).

PROOF: A(t)x(t)

In linear difference equations l-periodic scalars play & role very

analogous to that played by constants in linear differential equatiohs. Thus,

the set of functions xl(t),x2(t),...,xN(t) are said to be linearly dependent

Qpy e yOps not all zero,

l’

at t over the integers if there exist scalars a

such that

Z‘:___lakxk(tm) =0

identically for all integers m. Clearly, these scalars &) y0pyeee, 0 8TE
functions of t and can be chosen to be l-periodic in t. If thevfunctiqné

xl(t),x2(t),...,xN(t) are linearly dependent at t over the integers for all

_. _ |
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t, then they are said to be linearly dependent over the integers or merely

linearly dependent. Repeating, the functions xl(t),xa(t),...,xN(t) are
linearly dependent (over the integers) if there exists l-periodic scalar func-

tions al(t),aé(t),...,oh(t) such that

zi:l‘ak(t)‘e >0 for all t ,

and

zﬁ:le(t)xk(t) =0 for all ¢t .

The functions xl(t),xa(t),...,xN(t) are linearly dependent if the only 1-
periodic scalars satisf&ing this equation are all identically zero. The fact
that the scalars al(t),aé(t),...,ok(t) must be l-periodic is important.‘ Ir
each xk(t) is in E' and N 2z n+l, then there always are scalars which
satisfy this equation but they may not be l-periodié.

The foilowing Lemmas are not new with this paper buf ére included

here for completeness.

LFMMA 2 Linear dependence of solutions -- Any n+l solutions xl(t),xa(t),
...,xn;l(t) defined for t 2 t  of (13) are linearly dependent on

[toy ).

PROOF: For each ¢, t S t <t +1, there exist scalars al(t),ab(t),...,qh+1(t%
such that '

Ralg®i®>o | |

ENOORE
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identically in t on this interval (to st <t +1) This is because, for
each t, this equatlon is the relatlonshlp deplctlng—the linear dependence of

n+l n-vectors. Operating on thls equatlon with A(t), we get

n+l n+l
0 = AT 1o (t)5(8) = B 00 ()A(t)x,(¢)
| n+l

= I, _ 5 (8)x(t+1)

If we extend ak(t) to the right by letting ak(t+l) = ak(t), we see that we
have a set of l-periodic scalars which satisfy the condition for linear depen.-

dence,

IEMMA 3 If there are n linearly independent solutions of (13) xl(t),xa(t),
...,xn(t) defined for t Z t_, then every solution x(t) for

t 2 to' can be uniquely expressed as the sum
n
x(t) = Z;-lgk(t)xk(t) (14)

where each ak(t) is a l-periodic scalar.

PROOF: For each t in the interval tg gt <t +l, there exists scalars
al(t)’az(t)""’ah(t) which satiéfy (14). These scalars are uniquely defined.
If we extend these scalars to the right 5y using the relation ak(t+1) ='ak(t),
then the right-hand side of (14) represents a solution to (13) which agrees
with x(t) on t, € t <t_+l. Since the solution with this initiel function
is unique, we must have equatioh (14) holding for all t 2 toe

If we let X(t) be the matrix formed by the linearly independent
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solutions xl(t),xe(t),...,xn(t) (x,(t) 1is the k-th column of X(t)) and
y(t) be the vector with elements o (t) (o (t) is the k-th element of y(t)),

then y(t+l) = y(t) and equation (1L) can be rewritten as (1k').
x(t) = X(t)y(t) ()

The matrix X(t) is called a fundamental matrix solution of (13) and satisfies

the matrix equation X(t+l1) = A(t)X(t). If X(t) = I, the unit matrix, for

t, St < to¥l, then X(t) 4is the principal matrix solution of (13) and is

written X(t,to).. We note that, with the principal matrix solution, the func-
tion y(t) in (14') becomes the initial function xg ({t-t,)) end hence the

“solution x(t) can be written as (14").
{

i
i .

x(t) = X(t,t )%, ({t-t)) ’ . (1u")

LEMMA 4 Existence of n linearly independent solutions -- If det(A(t)) £ 0

for all t =2 to, then there exists n linearly independent solutions

of (13) for t 2 bty

PROOF: Let X(t) be a matrix solution of (13) such that det(X(t)) £ 0 for
t, 2t <t_+1l. Then, since det(X(t+1)) = det(A(t)X(t)) = det(A(t))det(X(t)),

we get by induction that det(X(t)) # 0 for all t 2 t_. The colimns of X(t)

()
thus represent n linearly independent solutions of (13).

. In everything that follows, I assume that det(A(t)) £ 0 for all
t 2 t and hence that Lema 4 holds.

Since X(t) is non-singular for.all t 2 tos X'l(t), must exist for
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all t. From the identity X'l(t)X(t) = I, we get that
-l ) -1 -1
X (e41)X(t41) = X (t+1)A(L)X(t) = X T(t)A(t)

and,éince X(t) 1is non-singular, X'l(t) satisfies the difference equation

(15)0

x1(t) = X" Yts1)A(t) - (15)

For z(t) a row vector (a 1 by n matirix), the difference equation (15') is

called the adjoint to (13).
2(t) = z(t+1)A(t) or z(t+l) = z(t)A"L(t) | (15')

A fundamental matrix solution of (15') is the inverse of some fundamental matrix
solution of (13). 1In particular, the principal matrix solution of (15') is the
inverse of the principal matrix solution of (13).

For each vector norm |x|, define the norm of a matrix M by M.
|M = inf (b : [Mx| S b|lx] for all x)

This matrix norm satisfies all the usual_properties of a norm [6].
(1) |M 20 for all M and |M =0 only when M = 0,.
(11) My = M) + |y
(iii) |oM =|o| |M for any scalar «

(1v) M s [ o

(v) ImMx] = |M |x| for any vector x
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ILEMMA 5 Boundedness of the Principal Matrix Solution -- Let &(t) be such

that |A(t)| S a(t) for all t 2zt  and E(t,t ) be defined by

= s
§(t,to) ‘1, t, St <t 4l

[t-t,) .
g(t,to) = jgl a(t-j) for t 2 t o+l

Then IX(t,to)l s g(t,t)) for all t Z ¢,

 PROOF:  The proof will proceed by induction. Since X(t,to) =1 for

t, s f < t 1, ve get that IX(t,to)I = 1= g(t,to) on this interval, Assume
that the inequality IX(t,to)l s §(t,to) holds for t, £t <s, some sZt 4l
Then, since X(t,to) satisfies the difference equation X(t+l,to) =

A(t)X(t,to), we get

|%(t+1,8 )] s [AGR)|X(t,t)] 5 a(t)e(t, b)) = t(t41,t)

for all t, t $ t <.s. Thus, if the inequality is true for 1t £ t <s, then

it is true for t, £ t < s+1 and, by induction, is true for all t 2 to;

COROLIARY If a(t) s a for all & % t,, then E(t,t)) S al t-tolg (a)ab-to

where k(a) =1 if a2 1 and X(a) = al if a< 1

PROOF': :
[t-to) [t-to)
E(t,6) = T Ca(ted) s I a=albto]
a1 j=1 ~

8ince [t'Fo] = t-t -.(t-to),




((t5,) 5 olbt0] . girto-{into) (y-(teto)) et

-(t-

If a2 l, a to) g 1=k(a), If a<l, a.(t'to) 5al- k(a) and the

corollary is proven.

IEMMA 5' On Boundedness of the inverse of the principal matrix solution --
Let al(t) be such that |A‘1(t)| s al(t) for all t 2 t  and

gl(t,to) be defined by

gl(p,to) =1 for t st<t 4l

(t-t0] |
_gl(t,to) = 3?1 al(t-J) for ¢zt +1

o.

then |x’1(t,to)| s &,(t,t)) forall t 24
. . . ‘4//

for all t 2 to,'then

COROLLARY If al(t) s a

gl(t,to) s agf-tO] s k(al)ai-to

-1
2 = 3
121 and k(al) a,” if a8, <1

The proofs are almost identical to the proofs for Lemma 5 and its

where k(al) =1 if a

corollary.

Notice that, under the conditions of the corollaries, the principal
matrix solution (and hence any solution) and its inverse are both bounded above
by en exponentisl, If, in the corollary to Lemma 5, a < 1, then all solutions

approach zero exponentiglly as t — o,




LINEAR AUTONOMOUS DIFFERENCE EQUATINONS
A linear autonomous difference equation is of the form (13') where

A 1is some constant n by n matrix (real or complex).
Ex = Ax » (13*)

In order to completely characterize the solutions of (lj) we will need the
following notation.

‘For any matrix B and some integer k 2 0, Null (sz' is the set
of all vectors x such that ka = 0., Null (B)k forms a linear subspace of
X. The distinct comple# numbers xl,xe,.;.,xr such that Null(A-A.iI)l con-

tains non-zero elements are called the eigenvalues of A. With each eigen-

i
value Ay of A +there is associated an integer m, 2 1 which is the smalles%

m m;+1 ‘
integer such that Null(A-in) il Null(A-kiI).i . The set of all non-zero

. m.
vectors x in Null(A-kiI) *  are called the generalized eigenvectors of A

corresponding to the eigenvalue Xi' It can be proven [h, Theorem 2 on page

115-11&] that any n-vector x can be written uniquely as the sum

Z?
X = x
kel &
mk -
where each x¢€ Null(A-ku) . |

For each integer n, the factdrial polynomial of degree n, written F

t(n), is defined by

8 o (e(ee1)... (6(n+1)))" T 1f n <O ;
+0) _ 4 | ,
£ Cg(¢-1)...(¢=(n-1)) if n>O. |




The factorial polynomial satisfies the very useful equality [5]
(+1) () = () 4 py(m-2),

Any complex number A £ O can be written as \ = reiw for some

real r >0 and real w. For real t, we can define the exponential function

llﬁ to be kt = rteiwt rei(a»2WR)t

. However, we can also write A = s and we

have a different definition for At for each integer k. However, noting

that ei2vkt is l-periodic for every integer k, we can chose '@ such that
~-T <w S 7T and absorb all the other definitions into an arbitrary l-periodie
coefficient. With the knowledge that there are many possible definitions of

AF but that their differences can be absorbed by a l-perlodic coefficient, we

will use the definition that XF = rteiam where T <ws7T in all of the

following,.

LEMMA 6 Linear independence of the factorial polynomials -- The factorial
polynomials t(k), k =0,1,2,.., are linearly independent over

[to,t°+s) where s is any number, s > 1.

PROOF: The proof will proceed by induction. t(o) = 1 by definition, and
hence t(o)' by itself is linearly independent. Assume now that t(o),t(l),

1)

zg...,t(n' are linearly independent but that t(o),t(l),...,t(n'l),t(n) are

linearly dependent for some integer n 2 1, Then we can write

-1
o) 5 e

where each ak(t) is l-periodic. Then




t(n) + nt(n"l)

n-1
Zk:o ak(t+1)(t+l)(k)

-1
. Z‘i_o ak(_t)(t(k)+ x (-1

n-1 n-1—
e T e T, (), (1)

n-1
- (m) o ak'(t)kt(k'l) .

Thus, we get that

n-l

nt(P-1) | %o ak(t)kt(k'l) .

This is possible only if ak(t) =0, k =0,1,2,,.,n-2, and ah-l(t)(n'l) = n,

i.e.,

(o (t):-—r-l— .
n-1 n-1

Then
) o (n-1)

n-l

From the definition of the factorial polynomials, we get
£ L (4-(n-1))e(mD)

Hence 'an 1(-t) as above is not possible and we have a contradiction. Thus,

the set t(o),t(l),...,t(n) is linearly independent whenever t(o),t(l),...,

t(n-1) is. The lemma is proven by induction.




LEMMA 6' Linear independence of the exponential functions -- If Aj,Any.ee)

xr are r distinct scalars (complex numbers), none of which are

zero, then the exponential functions l;,l;,...,l: are linearly

independent.
FROOF: Let @ (t),05(t),...,0 (t) be l-periodic functions such that

r

2k=1°’k(t)"f< =0 for all t.

Then, substituting t+j for t, we get

3 t+] :
Zk=lak(t)k =0 for J = 0,1,2’_”.,1._1 .

The determinant of the coefficients on the ak's is W(%).

t t t
/ hl L2 vos kr \

t+1 t+1 t+1
Xl )2 LN N ] Xr
W(t) = det .
t+r-1 ,[t+r-1l t+r—l}
\Xl ‘ Al2 LN ) l

ot . Xl lz oo Xr
= kll»goonxr dEt : :
r-l1 .r-l r-l
\ ll l2 coe Xr }




r-1
Let therebe constants B_,B,,...,B, ; such that p(A) = z&zoﬁklk satisfies

p(xl) = p(x2) = eee = p(kr) = 0. This p(A) 1is a polynomial in A\ of degree
léss than r which has at least r roots, The only possible polynomial with
this property is the zero polynomial, i.e., Po =Py = «ee =B,y =0. This |
in turn says that the rows of the last determinant above are linearly indepen-
dent and hencethat determinant is non-zero, Since none of the xk's are
zero, each factor hi in W(t) is non-zero, and so W(t) £ 0 for all .t._
Since W(t) £ 0 for all t, the only possible solution of the equa-

tions for the ak's is al(t) = aé(t) 2 L., = ar(t) = 0 for all t, and the

exponential functions ki,xz,...,ai are linearly independent.
Suppose now that A has only one eigenvalue A ﬁ O and that m, = m

1
(or that we restrict our attention to the space Null(A-AD)™). If x, isa

non-trival solution of the equation (A-XI)xo = 0, then one solution is of the
form x(t) = xokﬁ. However, this is only one of the m linearly independent
solutions which éxist. Even.if fhere were §evera1 linearly independent xo's
vwhich satisfy the équation (A-kI)xo = 0, in general there will not be m of
them. Since the factorial polynomials t(o),t(l),t(z),..., form a linearlyj

independent set on [t ,®), try the solution x(t)
o0
- (k). yt
x(t) = (Zk=ot X, )\

where each Xy is a constant vector. Then

x(t+1)-Ax(t) = (Z‘;O(tu)(k)xk)x“l-(Zk:Ot(k)Axk)xt

00

= Zk=o(x(t(k)+kt(k‘1))xk-t(k)Axk) A’ U

|




- Z£=ot(k)(Xxk+(k+l)hxk+l-Axk)lt.

From the requirement that .x(t+l)-Ax(t) =0 for all t, we get that X, is

arbitrary in Null(A-AI)® and

) a1 = = (A-M)x

i (k+1)M

for k = 0,1,2,... . By repeatedly applying this identity, we get that

Xk = c—]—-— (A—u)kxoa
k1K

Since x e Null(A-XI)m, we see that x_ =0 for all k 2 m. Thus, the sum

k
for x(t) has only a finite number of non-zero terms and there is no worry

about convergence. The solution is

-1 . (k
x(t) = x(t;r,x ) = ZLO lf?.). (A-AT)*x (16)

for ahy xée Null (A-Al)m. Note that this solution is a polynomial in t times
the exponential function xt and is a linear fuhction of Xqe -

In the more general case where A h#s the r distinct eigenvalues
A’l’ Agsyees ’)'r’ we can find n linéarly independent solutions in the following |
manner. Pick n linearly independent §ectors Xy3Xgy ooy Xy such that each
X is in one of the spaces Null (A-AﬁI)mj, J =1,2,...,r. This can always
be done [4], 1If X
the solution in (16).

m
€ Null (A-XJI) J, form the solution xk(t) in (17) ueing




xk(t) = x(t;kj,xk) for k = 1,2,5..;n (17

IEMMA 7 The n solutions (17) are linearly independent.
Let x(t) be the solution Of (13') with the initial condition

xo(t) = x(t) for 0=t <1l Write

xo'(t) = Z;lxk(t) 0st<l

m .
vhere xk(t) € Null (A-ku) X for each k. Then the solution x(t) 1is of

the form (18) using the solutions in (16).

r
x(t) = L x([t]5h, %, ((t))) (18)

Thus, any solution can be expressed as a linear combination of solutions of
the form of (16), i.e., as a linear combination of exponential functions times
factorial polynomials.

i

The behavior of each solution (16) depends-em the eigenvalue A\
under consideration. If |hi| > 1, then the solution (16) grows exponentially

as t - o, Equation (16) can be used as the definition of a solution for all |
t, and we see that the solution approaches zero exponentially as t — - ,

Let Xl be the subspace of X corresponding to all the eigenvalues li. which
satisfy |hi| > 1, Then any solution which starts in X\ (1.e., xto(e)e xt
for 0 £ 6 < 1) remains in Xl and grows exponentially as t —» o, The oniy

solution in X* which is bounded for all t in (-w,») is the trivial solu-

tion x(t) = 0.

If |Xi| < 1, then the solution (16) approaches zero exponentially



W

as t —»» and gi'ows exponentially as t — -w, Let x2 be the subspace of

X corresponding to all the eigenvalues ), which satisfy |>.i| < 1. Then

any solution which starts in X2 (i.e., xto(e) € X2 for 0 £ 6 < 1) remains

in 'X2 and approaches zero exponentially as t — o, The. only solution in

X2 which is bounded for all t in (-wo,) is the trivial solution x(t) = 0.
If I)\,ll = 1, then the behavior of the solution depends on the values

of (A-J\.iI)kxo in equation (16). 1If X is"such that (A--).iI)xo = O,v then

the solution is bounded for all t and is, in fact, periodic. Suppose
i2rw

M =€ for some w, 0 < w = 1, Then the solution (16) is given by
x(t) = e12moty
)
' ' . i2rkt
which is (1/w)-periodic. But, since e , k an integer, is a l-periodic
function, o7 %Px(t) = elz”(“”k)txo is also a solution of (13), and it is

periodic with period 1/(w+k). Since each T-periodie function is also mT-
periodic (m integer,m £ 0), the set S of periods for solutions of (13) is
8, = (m/(w+k); m £ 0, all k}. This set S = is dense in the real line, in
contrast to the case in differential equations where sm (the set of periods
of periodic solutions of % = Ax) consists of a countable set of distinct
points.
. * m .

| If lxil =1 and x, is such that (A-AI)'x =0 but (A-MI)x ) £

0, then the solution (16) grows like a power of t a&as t —w., The only

bounded solution is the trivial solution x(t) = 0.




AFFINE DIFFERENCE EQUATIONS

- An affine difference equation is an equation of the form of (19)

where A(t) is an

Ex = A(t)x + f(t)‘

(19)

n by n matrix and f(t) is an n-vector, Associated with

each affine difference equation (19) is a corresponding linear difference equa-

tion (13).

Ex = A(t)x

(13)

Let X(t,to) be the principal matrix solution of (13) and make the change of

variables (20).

Then

and so we get that

For to st < t°+1?

x(t) = X(t,%_)y(t)

x(t+1)

X(t+1,tc)y(t+1)
A(t)X(t,t ) y(t) + £(t)

X(t+1,to)y(t)¥+ £(t)

y(t) must satisfy the difference equation
y(t41) = y(8) + X (441, 8)2(t) .

we have X(t,t)) =I and so y(t) = xto((t-to)).

(20)




The solution for y(t) is, for t Z t +1,

[t-t,]

A = x () o T XN (be1g, ) (83)

and the solution x(t) is given by (21).

[t-t,]

x(t) = X(t,t)x, ({(t-t.)) + ‘Z.1 x(t,to)x'l(t+1-3,to)f(t-j) (21)
(o} j=

—,4////

Equation (21) is called the Variation of constants formula for (19).

Another form for the variation_of constants formula can be obtained

"by a repeated application of equation (19).

x(t)

A(t-1)x(t-1) + £(t-1)

A(t-1)A(t-2)x(t-2) + A(t-1)f(t-2) + £(t-1)
= A(t-1)...A(t-n)x(t-n) + £(t-1) + A(t-1)f(t-2)

+ A(t-1)A(£-2)F(t-3)+...+A(t-1).. . A(t-n+1)f(t-n) .

If we'let n = [t-to], then t-n = t°+(t-to) and

[t-t,)
x(t) = X(t, 8 )x, ({t-t ) + z X(t, t +3) £(t +(t-t_)+3-1)
(o]

j=1
This equation is more informative of the nature of the coefficients on Xt
and f in the variation of constants formula.
Let x°(t) be the solution of (19) with zero initial function. Then

xto((t~to)) =0 for ell t and, for t &t +1,



[t-t,)

() = x°(t38) = T X(t,t )X (641-5,8 ) £(t-3)
=1

We see that x° is a linear function of the function f. Let xl(x) =

Xty Then x'

x(t) in (21) can be rewritten as in (21').

x(t) = x(t5x, ) + x°(t55)
o]

Then
[t-t,]
|x(t50)] =1 I X(t,t,+3)£(t + t-t  +3-1)
J=1
[t-t,]
s X |X(t,to+j)||f(t°+ tet +3-1)|
° j=1
[t-t,]
= le g(t:to"'j)“ﬂlt = m(t:to)“f"t .

(holding t fixed), is of bounded variation on [t,,t] and such that

t

x°(t3£) = [ d.B(t,8)5(s)
t
o

See [T], for example.

—— — . —

13

xl(t;xto)_ be the solution of the homogeneous equation (13) with initial value

is a linear function of the function Xy and the solution
(o}

(21')

Suppose now that f € C[t ,t] and Hfﬂt= max. (| £(s)], t, £ 8 5 t},

Hence, x° 1is a continuous linear function of f. Thus there exists a matrix

valued function PB(t,s) ' such that each element, considered as a function of s




BOUNDED SOLUTIONS ~- NONCRITICAL CASE

Suppose that, in equation (19), where A is a constant matrix,
Ex = Ax + f(t) : (19)

the function f£(t) 1is defined for all t in (-w,=) and 1s bounded for all
t in (-»,®). Under what conditions is there a bounded solution x(t) of
(19) 7

Let |xl be any vector norm for x € E". A function f1 (-»,) SE°
is said to be bounded it there is some number F 2 0 such that |f(t)] s F
for all t in (-o,®), Let B be the set of all bounded functions and define
addition and scalar multiplication on elements of B 1in the usual sense, For

each f € B, let
£l = sup (| £(t)] ¢ all t) .
With this nofm, B becomes a Banach space,

IEMMA 8 Let [un} be a sequence of bounded functions, u € B, which converge

to ue€ B. If each u is (uniformly) continuous in t, then u
is (uniformly) continuous in t. If each L is almost periodie

uniformly in n, then wu, is almost periodic.

This lemma is a fairly standard one since convergence in B means
pointwise convergence uniformly in t. For the continuous and uniformly con-
tinuous proof, see any advanced calculus book, for example {16]. For the almost

periodic proof, see, for example, [17].
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The first case handled is the non-critical case where none of the

elgenvalues of A 1lie on the unit circle. The critical case is where one or
more of the eigenvalues of A 1lie on the unit circle. For the non-critical

case, we assume that A has the following form

where Al and A2 are square matrices such that all the eigenvalues of Al
lie inside the unit circle and all the eigenvalues of A2 lie ogtsidé the uni£
circle, If the matrix A 1is not in this form, it can be arranged to this form
by a transformation of co-ordinates, The assumption is that such a change of I
co-ordinates has already been performed. Let x = col(xl,xe) and f(t) ="'

col( f]_(t)’fe(t))' Then the difference equation (19) becomes the difference | '

equation (22),

Ex

L = Agxg 4 fl(t)

= Ak, + f2(t) (22)

Ex

N
!

Let xl(t) be a solution of (22)., Then

xl(t) Alxl(t-l)+f(t-l) = Aixl(t-Q)+Alfl(t-3)+fl(t-1)

= A% (t-n) + Zn ad-te (t-3)
i i A j:ll,l"j‘
Since all the eigenvalues of Ay are inside the unit circle, the matrices
A'i-l approach zero exponentially as j —», Since f 1is bounded, this means

that the sum converges as n -, If x; is bounded, then Arixl(t-n) -0 as




L6

n —»«o and
x,(t) = ,jglAi-lfl(t‘j) T (=23)

There are numbers &, >0 and bl’ 0= b, <1, such that

1

n n
2
|A;| £ ab) for all integers n 2 0

Aand so
(0] = I 107 n0n] e 2]

szabjmfn-——nf

I
o1 1

Hence the series for xl(t) converges absolutely. This inequality along with
equation (23) shows that xl(t) does exist and that it is a continuous linear

function of f.

If there were two. bounded solutions to (22), say xi and Xi, then
their difference xl-xi would be bounded and satisfy the homogeneous difference
equation Ex = Alxl The only bounded solution of this difference'equation
is the trivial solution %y =0, hence xi = xi and the bounded solution

- b -V/
is unique.  For future purposes;-we writé this solution as (23') I

= . '
where Ll: B - B is the continuous linear operator defined by the right-hand
side of equation (23),




L7

In a similar manner, we get the unique bounded solution xa(t) as

in equation (24),

x5(t) = Ly( £)(t) = - J‘:‘,OA;J’lfz(u;j)

Since all the eigenvalues of A, are outside the unit circle, there are numbers

e, >0 and b,, 0 2b, <1, such that
|A§n| s azbgn for all integers n 2 0

and so

© R a
x(t)] =+ TabpiYs) = <2
|}2( )i e £l —

The series converges absolutely anhd L2: BB is a continuous linear operator,

We can write the unique bounded solution of (19) as in equation (25)
x(t) = L(£)(¢) (25)

vwhere . LtB =» B is defined by

L,(£,)

L(f) =
Ly( f,)

and is a continuous linear operator.

THEOREM 5 If the matrix A does not have any eigenvalues on the unit circle,
then there is a continuous linear operator L ¢ B - B such that

x = Lf is the unique bounded solution of (19).




L8

: Ex=A.x+f(t). | | | (19)

This operator L has the following properties.,
1) If f is uniformly continuous in t, then so is Lf.
2) If £ is T-periodic in t, then so is Lf.

3) If f is almost periodic in t, then so is Lf.

PROOF: The existence and continuity of 1 and the uniqueness of the solution
x = Lf are proven in the preceeding discussion. .All that remains is to prove
that 1L possesses these three properties,

The proof of each depends on the following fact., Let h be some
real number end f € B. Define f,€ B by _fl(t) = f(t+h), Let x = Lf and
defined x,€ B by xl(t) = x(t+h). Then x, = Lf; since, in equations (23)
and (24), t can be replaced by t+h on both sides of the equations without
disturbing the equalities, |

Since L ¢ B -»B 1is a continuous linear opérator, there is a number
K, 0 & k <, such that [|Lf] s k|f| for all f e B.

1) If f 4is uniformily continuous in t, then, for each € >0,
there is a & = 8(€¢) >0 such that | £f(t+h)-£(t)] s € for all h, |n| s &.
For any such h, let f,(t) = f(t+h). Then f e B, l le = || fll, ana ||fl-f|| =
sup[lfl(t)-f(t)lz all t} s e.. Let x = Lf and xl(t) = x(t+h). Then
x, = Lf, and ‘

1

fxp=dl = llue -1 = W£-1] = ke .

Thus we have, for each € >0, |x(t+h)-x(t)] = |x;-x|| £ ke for ell h,| h| £8(€).

Hence x = Lf is uniformly continuous in t.




2) If f 4is T-periodic, then f(t+T) = f(t). Let £() = £(t+1).

Then f. € B, l|f1|| = || fl|, and f-f =0. Let x =1f and x,(t) = x(t+T).'
Then x, = Lf‘l and x,-x = Lf,-Lf = L(fl-f) = 0, implying that x = Lf is

T-periodic.
3) If f is almost periodic, then, for any € > 0, there is an

2(€) >0 such that, in any interval of length £(€), there is a T such that
| £(t+T)-£(t)| = €

for all t. For this €, f(€), and T, let f. be the function defined by

1
£,(t) = £(t+1). Then £ -f] = e. Let x = If and x,(t) = x(t+41) = L (t).

Then
lx-x = Kl£ -5 s ke
and we see that x = Lf 1s almost periodic,
As an example of the application of this theorem, consider the fol-

lowing interesting problem. Given the following differential equatibh where

£ €B, find a solution x € B

X =%

-x) + g(t)

numerically by using the Crude Euler method. For this differential equation angd

a given spacing h >0 in t, the Crude Euler method is given by the following

difference equation.




x.+ h% x.+ hx

CExy = xp+ bxy o= X0+ hxg

un
n

Ex, x2+‘hi2 ~hx,+ x4 hg( js)

Here, the independent varisble is changed to s where t = hs in order to
bring this difference equation into the form of equation (19) In fact, equa-

tion (19) becomes equation (26) if we let

1 ‘ 0
A= f(s) =
-h 1 hg( hs)

= 1l+¢ih and A

The eigenvalues of A are A >

1 = 1l-ih. Neither xl nor A, 3
are on the unit circle, so Theorem 5 holds. Indeed, since |X,| >1 end

‘le > 1, equation (24) gives the bounded solution of (26) for any bounded

function g. Since the differential equation has no bounded solution for -

g(t) = sin t, we see that the behavior of the difference equation (265 in this

case is considerably different from the differential equation,

Let x be the bounded solution of (26). Then the bound on x 1is

given by - *

l._
[ x(8)] sﬂ—lﬂ‘—L—uﬂl —*ﬂﬂ‘—Lnﬂl 1*‘;*") ldl

1-(1+h ) 3

and we see that, while h >0, if h is small then the bound on |x(t)| may
be large indeed, in the limit as h -0, the bound becomes infinite (if [g|>0).

For g(t) = sin wt, we get the solution

o

xl(t)

x2( t)

lcos wt + a2'sin wt

a3c°5 wt + ah sin wt

R




((1-cos a>h)2-( sin wh)2+h2)24 4(sin wh)z( l-cos u:h)2

. = 2hoein wh( 1-cos wh)/d

[N
1

o, = h2((l.-cos wh)2-(sin wh)2+h2)/d
a = -h sin cﬁh((l—cos wh)2+ (sin a)h)e-he)/d

o, = -h(1-cos ch)((1-cos wh)2+ (sin cnh)2+h2)/d .

2

We notice that |x (t)I s a +0, =h /d that x,(t) 1s approximately

orthogonal to xl(t) s and so the term h /d will give us a good approximation

to the upper bound of |x(t)|2. Expanding sin ah end cos wh in their

Taylor series, we get

2.2

l-cos wh = $w h+ ...

sin wh

wh--w}h+...»

end, after some simplification,

= (1- 2)2hh 2 h('(-cn )h oeee o

The bound we desire is"

hh 1

a )2+ }- wh( 7-m2)h2+ ces .

For w #£ 1, this is close to the desired amplitude. The bounded solution of the

differential equation satisfies




1x(£))2 s 1/(10F)°

-

and we see that, if we ignore terms of order h2, this bound is hh/d. However,
when o = 1, there is no bounded solution of the differential equation and the

bound on the bounded solution of the difference analog is

L
Ix(6)|% 8 B s 2

a h2 + e
This shows ﬁhat the bound for ||x| can be reached; While the behavior of the
bounded solution of the difference analog (26) is considerably different than
the behavior of the bounded solution of the differential equation near w = 1,
this fact can be easily detected by computing the solution twice, once with
h = ho and once with h = %ho. If the two computed solutions vary greatly,
~then h° is in a region where the behavior of the difference analog differs

greatly from the behavior of the differential equatipn. The solution is to

use elther a much smaller h or a different numerical mgthod.

THEOREM 6: If the matrix A is such that none of its eigenvalues lie on the
unit circle, then there is some €, >0 such that there is a

bounded solution x*(t) of (27) for each €, |¢| <e,,

Ex = Ax + €f(t,x,€) . (27)

where f(t,x,€) is bounded for each fixed bounded x, each €,
el < €, and all %, and f is uniformly Lipschitz continuous

with Lipschitz constant F for all t in (-=,@) and all x

n



with |x] s M, some M >0. This bounded solution x*(t) has
the following properties,

1) If f£(t,x(t),€) is continuous in t for fixed €, contin-
wous x, then so is x*(t).

2) 1f f(t,x(t),€) is T-periodic in t for fixed e, T-periodi
x, then so is x*(t).

3) If £(t,x(t),€) is almost .periodic for any almost periodic

x(t), then so is x*(t).

This result differs from that of Halanay [10] in that, in this paper,
Halenay only considers the solution to be defined on the integers. Thus, when
Halanay deals with T-periodicity, T must be an integer. His work with almost

periodic functions is for functions almost periodic on the integers. Thus, th}s

I
result is a generalization of Halanay's result in [10]. ]

]
If all the eigenvalues of A are inside the unit circle, then this
theorem is a specialization of the result of Halanay in [11]. At the same time,
this result is more general than that of Halanay in [11] since this result

allows A to have eigenvalues outside the unit circle.

PROOF: Let x be any bounded function with [[xl = M. Let N be the positive
number such that |f£(t,x,€)] S N for all %, all x with |x] S M, end

lel < €, some € >0, For this x, define the operator 1* by

L¥(x) = eL(£(+,x(+),¢))

[

where I is the linear operator of Theorem 5. Then

el (-5 ), D
le| ki £C-,x(-), el = | el Ky | | j

“ L*(x)||

[}

— T —




where K is the bound on L from Theorem 5. Thus, L* maps bounded func-
tions into bounded functions., Furthermore, if |e|KN s M, we get that
lz*(x)l s m.

If x* is a fixed point of L*, i.e., x* = L*(x*), then x* is the

bounded solution of
Ex = Ax + €f(t,x*(t),¢€)

and hence is the desired.solution. We will show that such a fixed point exists

by showing that L* is a contradiction mapping for | €] small enough.

Let x,,X, be bounded solutions with [l €M ana flxf = M.
Then
fzx(x,)-1*(x )l = I€|HL(f(',xl(-),é))-l(f(-,fg(-),e)ﬂf
= | el l(£(e,x (), €)-£(-,x5(+ ), €))l
S 1|20, x,(+),€)-(+, x50, €l
s |F|KFHx1(-),-x2(-)H sl BRI

since f 1is uniformly Lipschitz continuous with Lipschitz constant F.
If € is such that |e€/KN s M and |€|KF < 1, then L* is a con-
traction mapping on the set [[x| S M, and I* has one and only one fixed point

and

x* with ||x¥] s M. This is the case for all € such that |¢| < €

)

M 1
€1 = min (Eo, -KTI 3 -ﬁ;

I




1) 1f f£(t,x,€) 1is continuwous in t for fixed X,€, then
f(t,x(t),€) 1is continuous in t whenever x 1is continuous in +t, thus = L*(x)
is continuous in t. In the iterations used to prove the existence and unique-

ness of x*, the initial function x, 1is chosen continuous in +t, then each

1
iterate X will be continuous in t and so the 1limit x* will be continuous
in t.

2) If f(t,x,€) is T-periodic in 't for fixed x,€, then
f(t,x(t),€) is T-periodic in t for any T-periodic x and I*(x) 1is T-
periodic will lead to the limiting function x* being T-periodic.

3) If f(t,k(t),e) is almost periodic in t for any almost perioéic
x, then L*(x) will be almost periodic andAchoqsing an almost periodic initial

function Xy will lead to an almost periodic limiting function x*,




AFFINE DIFFERENCE EQUATIONS -- SIMPLEST CRITICAL CASE
The problem considered here is to find a T-perlodic solution of the

difference equation (28).
Ex = x + £(t) ‘ "~ (28)

where f(t) is T-periodic for some T 2 1 and f is integrable.

This case is called critical because the homogeneous equation has
non-trivial T-periodic solutions. It is the simplest critical cése because
the matrix A 1is the simplest possible matrix, the unit matrix I.

We use the notation that [t] is the largest inteéer less than or

equation to t and t = [t] + (t). We call [t] the integer part of t and

(t) the fractional part of t since [t] 1is an integer and 0 £ (t) < 1.

For each integér n >0, the solution =x(t) is given by
/ .

e

' n
x(t) = x(t-n) + I £(t-3) .
. =1
Letting n = [t], we get (29) for t 21
[t)
x(t) = x((t)) + le £(t-J) ‘ (29)
where x((t)) = xo((t)) is the initial function. The problem is to détérmine

under what conditions of f will there be an x  such that x(t) given in

(29) is T-periodic. From (29) we get, using f£(t+T) = £(t),

.

o [t+T]
x(t47)-x(t) = x({£+T))-x({t)) + L £(t+T-J)
j:[t]+l

|



[ta1]-[8]
= x((t+T))-x((t)) +321 £({t)-3) r

(30)

While equation (30) was derived using the solution defined oﬁly for t 21, it
can be easily shown that equation (30) hold for all t in (-e,»), Thus, if
‘we can find an initial function X such that the right hand side of (30) is
zero identically in +t, then that initial function will give a T-periodic
solution,

The first, and simplest, case considered is when the periéd T is

en integer 2z 1, Then (t4T) = (t) and [t+T] = T+[t] and (30) becomes (31)

T
x(t4T)-x(t) = lef(<t>-:j) (31)

and x(t) is T-periodic if and only if f(t) satisfies (32) for all t.

% £({t)-3) =0 +(32)
J=1 ' .
Whenever the solution is defined only for t integer, then (32) is the con-
dition that is necessary and sgfficient for a T-periodic solution of (28) to
_exist [10]. |

For any real T, let Xy be a T-periodic solution of the homogeneous
equation Ex = x. Since all solutions of the homogeneous equation are l-peri-
odic, 3% is both l-periodic apd T-periodie, If f ié irrational, then the
only ‘possibility is xl(t) = constant, If T =m/n where m and n are

relatively prime integers, then any 1/n-periodic function will do for x,(t).




i
*

If T is an integer, then any l-periodic function will do for xl(t).
Suppose that

T
I=/ xl(t+s)*f(t+s)ds £0
o

where xl(t+s)* denotes the complex conjungate transpose of xl(t+s). This
integral is independent of t. For any solution x(t) of (28), consider
T

t) = f'xl(t+s)*x(t+s)ds .
o

Since xl(t+s+1) = xl(t+s), we have

. _
Ht+l) = [ xl(t+s+l)*x(t+s+l)ds
) .

o .
= [ xl(t+s)*(x(t+s)+f(t+s))ds = 7(t)+I
° .

and hence

: v(t) = w((t)) + [T .

Since |¥(t)] 2= as t —» o, we have that x(t) must be unbounded as T ==
. and hence cannot be periodic., This condition I £ 0 is the condition of

resonance and is exactly analogous to resonance in differential equations.

LEMMA 9 A necessary condition for a T-periodic solution of (28) to exist is

that




—e
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T

- J xl(s)*f(s)ds =0,
)

(33)

for every T-periodic solution Xy of the homogeneous equation
Ex = X.
If T. ;s an ir

rational number, then condition (33) becomes simply

If T =m/n where m and n are relatively prime integers, then

condition (33) becomes

T

f xH f(s)ds =
I xj(e)s(s)as = 0

- for all 1/n-periodic functions xl(t).

In the case where T is an integer, all l-periodic functions Xy

are permissible and this condition becomes

T T T-j+l
I=/ xl(s)*f(s)ds = L/J xl(s)ff(s)ds
' -0 J=1 T-J

T 1
=2 f xl(s)*f(s-j)ds
J=1lo0 -

1 T
= [ xl(s)* Z f(s-j)as =0 .
o J=1

One candidate for xl(s) is

T
x,(s) = Z £({s)-J)
J=1




which is l-periodie, Using this xl(s) and letting |x|2 = x*x for any

n-vector x, we get equation (3L).

' 1 T 2 »
"I =[] L f(s-3)]%as =0 (34)
o J=1
Cémparing this to condition (32), we see that condition (32) implies
condition (34) and also that condition (34) implies condition (32) almost
everywhere in t. If we identify all functions which are equal except on sets
of measure zero as the same function, then conditions (32) and (3#) are
equivalent. In the work that follows, this identification of functions shall
" always be made. Thus, when we write f(t) = g(t),'we mean that they agree
for all t except possibly on a set of measure zero.
Let X, = Ly[0,1), For a given T, let § be the set of all T-

periodic. functions f which are square integrable over one period. For

each f ¢ S, define |f} by
oA T
2 1 2
142 = 2 1 1o %ae
o
The functions ¢n€ s,
o (t) = exp(iant)  n = 0,%L,%2,..,

where ® = 2r/T, form a complete orthogonal basis in this Hilbert space .

That is, each f in S can be written as (35)

£(t) = 5 £ ¢ (1) | o (39)

nnn
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where the sum on n 1is over all the integers, positive and negative, and the

fn are the Fourier coefficients of f. : |

T
£ =gl 0 (-s)f(s)as  n =0, (35')
(o}

1

of the homogeneous equation Ex = x. Then Sl is a subspace of S§ and

Let S, be the set of all square integrable T-periodie solutiohs I

consists of functions which are both l-periodic and T-periodic. If T 1is an
irrationai number, then S, consists only of éonstant functions and, if

x € S then x(t) = xo¢o(t) for some constant vector x ., If T isa
rational number and T = M/N where M and N are relatively prime integers,
then S, consists of all square integrable l/N-periodic functions and, if

1

x € 8,, then

1

x(t) = Z‘,annthn( t)

wherq %Mh is the Mn-th Fourier coefficient of x.

Let P be the projection operator which maps S onto S.., That

_ 1
is, if x € 8, then Px € §; and, if T is irrationel
1 T
Px(t) = xooo(t) =7 [ x(s)ds (36)

o

end, if T = M/N as before, then

P(t) = Lx e (8) (6
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Let S, be the orthogonal complement of §,, i.e., all the functioms

l’
x in S which satisfy Px = Q.
If xe8§, then Ex € S and

Ex(t) = x(t+1) = thn°n(t*1) = Z£Xn°n(l)?n(t)

and, if T is irrational

\. ) ) 1 T
(PEx)(t) = T [ x(s+1)ds
o

1 T .
3 x(s)as = ()(8) .
o

If T = M/N as before

(PEx)(t) = I x, 0 (1)o, (t) = L x, o () = (Px)(t)

since o, € S, (hence ¢Mn(l) =1) for n =0,%1,#2,... . In either case,

we get the important fact that PEx = Px for any x € S.

LEMMA 10 The condition Pf = 0 1is necessary for a T-periodic solution of the

difference equation (28) to exist.

Ex = x + £(t) | | (28)

This condition Pf = O is the same as conditions (32) and (33).

Lemma 10 and Lemma 9 are the same. Both are included since they are

proven using different terminology. The condition Pf = 0 is the same as

condition (33) but the former condition is easier to picture geometrically and
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is easier to check. P 1is a projection operator which projects any T-periodiec
f in 8§ onto the subspace S, of T-periodic solutions of Ex = x. Thus,

the condition Pf = 0 1is that f must be orthogonal to the subspace Sl}
P has the explicié representation given in equation (36), so we can check

if ff = 0 merely by checking certain Fourier coefficients of f.

PROOF: Suppose x 1is a T-periodic solution of (28). Using this x, operate

with the projection P on equation (28).
PEx=PX+Pf.

Since PEx = Px, we get Pf = O.

LEMMA 11 If x € S is a T-periodic solution of (28), then there is a unique

T-periodic solution & of (28) which satisfies PR = 0. This &,
‘considered as a function of f € S, Pf = 0, is a linéar function of
f. If the T-periodic solution x can be chosen in a manner such
that it is a continuous function of £, then ﬁ{'se -5 is a con-
tinuous linear function of f and there is some k, 0 £ k < =, such

that [|R(£)]| = u1].

PROOF': Fof any x € S, the function X = (1-P)x is in S and satisfies
PR = 0.

Let & be anothér T-periodic solution of (28) satisfying PR = 0.
Then ﬁ-§ is a solution of the homogeneous equation Ex = x and thus is an
element of .S . So |

l .

"
A

2
X=X

n
g
—~~
>

P
tals
~—

n
B
L
2
n
o




and R = %, Hence the T-perioéic solution R satisfying PX = 0 exists and

is unique. Denote this as a function of f by & = X(f).
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Since oX(f) 1is a solution of (28) with f replaced by of for

eny scalar «a, oX(f) is T-periodic and satisfies P(aR(f)) = aPR(f) = 0, we

see that oR(f) = R(af).

Since ﬁ(fl) + i(fe)

£ +f2 for any f

1 1l

is a solution of (28) with f replaced by

€8, fe 8, Pf, = Pf; = O,'ﬁ(fl)+ﬁ(f2) is T-periodic and

satisfies P(ﬁ(fl)+i(f2)) = Pﬁ(f1)+P£(f2) = 0, we see that i(fl)+ﬁ(f2) =

ﬁ(fl+f2). Hence, X(f) is linear in f.

If x 1is chosen in a manner such that it is a continuous function

of f, then, since % = (I-P)x is a continuous function of x, £ is a con-

tinuous function of f. The inequality [|R(£)|| = k||f] follows from the fact

that & is a continuous linear function of £ [7].

This preceding lemma shows that, if a T-periodic solution exists, then

A

there is a unique solution X which has all the desired properties,_ﬁotably

that Pbi = 0. The problem now is one of finding a T-periodic solution to (28).

For the case when T is a rational number, the solution X

can be found by comparing Fourier series directly.

THEOREM 7 If f e S satisfies Pf =0 and T = M/N where M and N are

relatively prime integers, then there is a continuous linear oper-

ator I:S, =S

2~ %2
solution of (28) which

Ex = x + f£(t)

satisfies PR = 0.

()

such that % = L(f) 4s the unique T-periodic

(28)




PROOF: If there is such an X ¢ S5, then it can be representéd by its Fourier

Series.

2(t) = T x o (t)

nnn

where the x , n = 0,%1,#2,..., are the Fourier coefficients of . Since

feSs it has the Fourier series

o)
M.”f(t)AEngihﬁn(t) S

The condition Pf =0 is the condition that f, = 0 wvhenever n/T 1is en

integer. Then

R(t+1)-R(t)-£(t) = L ((o (1)-1)x -f )¢ (t) .

'
If % 1is to be a solution of (28), then each of the coefficients must be zero,

i,e.,

If o/T is an integer then f =0, ¢ (1) =1, and x  is arbitrary. The con-
dition PR = 0 specifies X, = 0 whenever n/T is an integer. If n/T is

not an integer, then ¢n(l) £1 and X, is given by (37) : F

X = ‘ (37)




Thus, ® 1is a lipear function of f. This preceding work is valid if we can
show that this. & 1is square integrable.
S8ince T 1is a rational number and ¢ (t) = exp(iunt), T = M/N where

M and N are relatively prime integers and

Iei‘m-1|2=hsin2%unéhsina%‘=62>o
for all n such that n/T # an integer. Then
2
2 oo |5 1 2
APIERE IR AT
| e -1

|
where 2% means the sum over all the integers n such that n/T # an integer.
_ This shows that R is in S, and is a continuous linear function of f. The

linear operator 1 1is defined by

%(t) = (L0)(t) = I ——De 0 (%)
(o (1)-1)

. \J
where fn is the n-th Fourier coefficient of f and ZL has the same meaning
as before. By Lemma 11, we know that this is the only such solution.
If T is an irrational number, then the Fourier coefficients of R

would still be defined by (37) (except for x, which is zero), The problem

then is one of showing that
2 a2
AP E

i8 bounded or under what conditions is 2R a continuous linear function of f.




The permissiblevfunctions f will prébably have to be restricted to be some
subset of §,. TFor one solution of this problem, see Moser [11].

If there is a continuous linear operator L:S2 —»Sa such tﬁat X = Lf
is the unique solution of (28) which satisfies PR = 0, then a class of non-
linear problems could be studied in a manner similar to Hale [12]. However,
there are problems in detérmining the meaning of the fact that the non-linear
term must be bounded and Lipschitz continuous in the norm of §, i.e. the
L2[0,T] norm,

As an example, consider £he Crude Euler difference analog to the

differential equation
k= £(t) ' | |
where f£(t+T) = £(t). Letting t = hs, the analog is
Ex = x + hf(hs) = x + g(s) .

If we chose h such that T = hN for some integer N, then this difference
analog is like equation (28). In this case, the condition Pg = 0, which is
necessary and sufficient for an N-periodic solution of the difference analog to

exist, is that

N
f e12nns
(»]

g(s)ds = 0 n = 0,11,%2,,,,

or, in terms of f and t




T2rrnt

L
[ ' B gt)at = f e* T
o] o
Ir
T
[ £f(t)at = 0
(o]

then a T-periodic solution to the differential equétion does exist. However,

we see that this is only one of the conditions needed to have a N-periodie soluf
tion of the difference analog to exist. In fact, every N-th Fourier coefficient
of f must be zero before there exists an N-periodic solution to'the.difference

analog. If one or more of these Fourier coefficients are not zero, then there

does not exist an N-periodic solution to the difference analog.

If T/h = N is an irrational number, then fhe condition Pg =0
reduces to the condition which is necessary and sufficient for a T-periodic
solution of the differential equation to exist. However, I have not been sable
to show that the condition Pg = 0 is sufficient for an N-periodic solution of
the difference analog to exist when N is an irrational number.

The aim of all this work is to develop a bifurcation theory analogous
to that in Hale [12]. The first étep in this theory is to show that there exists
a continuous linear mapping L:S, —» Sp such that % = Lf 1is the unique T-
periodic solution of (28) which satisfies P& = O. This has yet to be done for
the case when T is an irrational number. Yet, from the above examplé, it

would appear that this would be the most interesting case.




AN AVERAGING METHOD WITH AN APPLICATION
Halanay [10] gives fhe following theorems for a system of almost-
periodic difference equations., While all his work is concerned with the solu-
tion being defined only on the integers, his proofs are easily extended to in-
clude the solution beiﬁg defined on the reals, In [10], Halanay first gives an

approximation Lemma which is stated here,

IEMMA 12 If f(t) 4is such that
a) |f(t)] S F for all t, some F 20
1 - '
b) |5 Zk_lf(t-k)| s ¢(N) for all t, some €(N) 20
and €(N) 50 as N —»», For some 7, 0 <75 <1, let fﬂ be

the function defined by
; S k-1
£,(t) = 5 _1(1-n)"" "1 (t-K).

Then there exists a continuous function &(n) with &) -0 as

1 =0 such that

n|fn(t)| s 8(n) for all t
£, (441)-5,()-£(8)] 8 B(n) for ettt

LA

That is, fn is an approximate solution to the difference équétion (28)

which can be made as accurate as desired by taking 1n small enough,

"BEx = x + £(t) ._ ' "~ (28)




T0

Condition b) is the natural one to use for difference equations since
the solution of (28) is a sum of f(t-k). However, this condition is usually
very hard to verify., When this lemma is applied to the numerical solution of
differential equations, we will have f(t) = g(ht) for some h >0 -and

: 1 T
: I'-f’f g(t-s)ds| s €)(T) for all t
o
where el('l‘) -0 as T 2o,
The following identity, a modification of the Euler-Maclaurin sum-
mation formula, is easily verified by integration by parts.
N N N
)fk_lf(t-k) = [ f(t-s)ds - [ £'(t-s)(s)ds
- o o
where f'(t) is the first derivative of f with respect to T. Making the
change of variables f(t) = g(ht), we get

T

N 1 h u
Zk___lf(t-k) =5 fog(ht-s)ds -5 fog'(ht-s) (E)du .

2~

where T'= Nh. In general, this last integral will not go to zero as T = .
even though the first one does. However, under fairly general conditions, e;g.,

| &' (t)] bounded for all t, we can bound this last integral by hG.

T . ,
|%f g'(ht-s)(%)dsl € hG for all t
o

Then _ '

N
|5 5 £(t-K)| s € (T) + b6 = € (W) + bG .




In general, we get this sum going to zero only by letting h go to

zero. However, ‘if we look at the proof of Lemma 12, we see that the critical -

inequality is

N €(N) .

NF
1-(1-n)¥

l£,(8)] =

and we get the desired 8(n) by letting N = N(n) be chosen as a function of

N such that
e(N) s 1-(1-n)"

Then we get 8(n) = ﬁN(n)(l+F).

If, instead of the sum of £ went to zero, we knew only that the

integral of g went to zero where f(t) = g(ht), then this crucial inequality

becomes:

N(el(Nh)+hG)

|fn(t)[ s '1-(1-q)N + NF

We now let N and h be chosen as functions of 1 such that

1-(1-n)"

A

2heG

1-(1-7)"

A

2e1(Nh)

These functions h = h(n) and N = N(n) satisfy h(n) -0 as n -0,

b(n)N(n) -~ as 1 -0, and nN(n) -0 as 1 - 0. Then we get




I

&(n) = nN(n)(1+F)

Thus, Lemma 12 is still true. However, this solution has the undesirable
property that we must let h -0 as 1 - 0. This means that, in order to have
5(n) 'small, i.e., have fn(t) be an accurate solution of (28), then we must
teke both N large and h small.

There is one exception to this problem of h(n) -0 as 1 =0, .If
g(t) is P-periodic and P/h is an irrational number, then t.he theory of

equidistributed sequences [14,15] gives us that

150 1 ,F | |
l'ﬁ Tk.-.lg(ht"hk) “F jog(S)dS| 50 a5 N-ow,
7"7—<—A’_’(/,
In this case, if
1. F .
ﬁf g(s)ds = 0
o .

then we have the existence of some ea(N) ‘such that

5
|§ B (ht-hk)| s () for all ¢

and 63(N) —»0 as N - Thus, in this case, the conditions of Lemma 12 are
satisfied. If P/h is rational, then we can constr1\1ct a g such that this
sume does not go to zero as N ->'eo, and we have to p.ick h small in order to
get the desired accuracy.

Consider the difference equation (38) where A(%t), A'l(t), and

f(t,x,€) are almost periodie in t ~uniformly in x and €.




Ex = A(t)x + €£(t,x,€) (38)

Let X(t) be the principle matrix solution of the homogeneous equation (39)

with X(8) =I, 05 6 <1, and let X(t) and X'l(t) be almost periodic in t.
Ex = A(t)x (39)

If A and f are periodic in t, then they are‘also élmoét periodic.
The problem in requiring X(t) to be periodic is that this choice of the
initial function X(8) = I, 0 £ 6 < 1, will not in general lead to a periodiec
solufion even if there exiéts a fundamental matrix solution of (39) which is
periodic. Determining that the principle matrix solution is almost periodic
ié an easier task than finding a fundamental matrix solution which is periodic.
For example, if A(t) = A, a constant 2 by 2 matrix, both the eigenvalues of. A
have simple elementary divisors, and the eigenvalues of *A lie on the unit
circle, then the principle matrix solution X(t) is almost periodic. A very
careful choice of X(8), 0 £ 6 < 1, will have to be made before X(t) will be
periodic. 1In this sense, it seems more natural to look for almost periodiec
solutions of differenée equations than to look for periodic solﬁtions.

By the change of variables x = X(t)y, the difference equation (38)

becomes

Ey = y + eg(t,y,¢€) : (L0)

where




™
-1
g(t,y,€) = X(t+1) £(t,X(t)y,€) I
is almost periodic in t uniformly in y and €., Let go(y,e) be
1 N
go(y’,E) = 1lim N z g(t-k,y,e) (,-Fl)

N-ow k=1

The average value of g(t,y,€¢) (since g(t,y,€) is almost periodic, the limit
exists uniformly in y and € and is independent of t). Let Y, be a solu-

tion of go(y,o) =0 and let the matrix H be

9,
H = S;— (Yo,o)

The following theorem is a restatement of Theorem 5 in Halanay [10].

THEOREM 8 The principle of averaging: If the real parts of all the eigenvalues

of H are less than zero, then there exists an almost periodic
solution x(t,e) of (38) for each €, 0 <€ < €, some € >0,

which reduces to x(t,0) = X(t)yo as € —0.

Consider as an example of the apblication~of Theorem 8 the Crude Euler

difference analog for (L42)
% = ef(t,x,€) | - e)

where f(t,x!e) is almost periodic in t uniformly in. x and €. Let the

average value of f(t,x,€) be fo(x,e).




T

f (x,€) = lim 1 [ £(t-s,x,€)ds
o T
] o
, R
The Crude Euléfranalog is given in (43) .
Ex = x + €g(t,x,¢€) (43)

where
g(t,x,€) = hf(ht,x,¢€).

This equation already is in the form of equation (40) so the change of variables
x = X(t)y does not have to be performed. The average value of g(t,x,€),
gl(x,e), is given by

. . .

g,(x,€) = lim T'f g(t-s,x,€)ds = hf_(x,€)
T 9 o]

This is not the average value go(x,e) used in Theorem 8 but, considering the
discussion fqllowing Lemma 12, if we choose h as a function of € properly,
then h = h(€) 20 as € -0 and the conclusions of Theorem 8 still hold when

gl(x,e) replaces go(x,e). The matrix H V

og of :
1 (o]
H = S;- (xo,O) =h g;— (xo,O)

goes to zero as h -0 but this does not create any problems since g(t,x,e)—»o

as h -0 and the effects of these two phenomena cancel each other.

If x, 1is a solution of f (x,0) = 0 and the real parts of all the
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eigenvalues of H are negative for h > 0, then there exists an almost periodic
solution x(t,€) of (42) for each €, 0 <€ < €, some € >0, which reduces
to x(t,0) = X, @8 € —0. See, for example, [12] for a prdof of this
statement. The significance of this application of Theorem 8 is that, under
the s;me conditions that insure the existence of an almost periodic solution
of the differential equation (42), and the step size h is chosen small enough,
there is an almost periodic solution of the difference analog (43) and, further-
more, these two solutions reduce to the same solution x(t,0) = x  as € -o0.
While this is a case where the differential equation and its difference
analog display the same qualitative behavior, i.e., the éxistence of an almost
periodic solution, - the above analysis leaves several questions unanswered.

For example, do the two almost periodic solutions display the same stability

properﬁies? How close is the almost periodic solution of the difference analog |

| to the almost periodic solution of the differential equation?




==

AN INVARIANT MANIFOLD METHOD WITH AN APPLICATION

Consider the Van der Pol equation (L4) with € > 0.
[ 1] [ 2 '
¥ - 2ex(l-x ) +x =0 ' (44)

With a constant spacing h >0 and a change of independent variable from t to

s = ht, the central difference analog to (4k4) becomes (45)

Ey = x
(45)
Ex

(2-h2)x - ¥ + €hf(x,y)
where

2 2 ' .
f(x,y) = f(x,y,h,€) = (1-x )((2-h2)X-2y) A
1-€h(1-x")

It is well known that the Van der fbl equation (Lh4) has a stable limit
cycle which is a periodic solution with amplitude approximately 2 for small
€ [12]. It would seem reasonable to expect the difference analog (45) to dis-
play this same type of behavior, at least for the spacing h small enough.
Yet the examples given at the beginning of this paper show that such blanket
assumptions about the behavior of the difference analog reflecting the behavior
of the differential equation cannot be-made. The difference analog may display
behavior completely different from thatvdisplayed by the differential equation. |
The purpose of this section is to show that the qualitative behavior of the
difference analog (45) is the same as the qualitative behavior of the different-

ial equation (44) for € small,

 The central difference analog is chosen for the following reasons. It
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involves no moré than the two variables x and y and so solutions can be
displayed on a piece of paper without undue difficulty. Also, at € = 0, both
the differential equation (4&4) and its difference analog (45) have the behavior
of a center. This desirable property is not shared by such other methods as
the C£ude Euler and the Corrected Euler. The Central Différence analog is
chosen over the Iterated Euler analog because the difference equation for fhe
Central Difference analog is much simpler.

For € = 0, we know that the solutions of (45) lie on a level curve

of V(x,y) where

V(%) =3 (o) + o (xp)°
and _

Q@ = (b-12)/(802) , a>0.
A level curve of V(x,y) is an ellipse as shown in Figure 6 where 2cosw = 2-h2.
For h small, these ellipses are very long and narrow., If we make a change of

variables to u and v where

u = 3(x+y) x = u+(v/20)

(46)

v = a(x-y) 0y = u(v/20)
then V(x,y) = u2+ v2 and, in the u,v plane,\level surfaces of V are circles

The difference equation (45) becomes the difference -equation (47)

Eu = cos w u + sin @ v + €hU(u,v) (h')
i

Ev = -sin w u + cos o v + €h20U(u,v)




U(w,v) = U(w,v,h,€) = 3f(u+(v/2a), u-(v/2a),h,€) .

The following jdentities are used in deriving the fbllowing equations.

2
2 cos w = 2-h2, sin = h“0, sin 2w = 3h, cos 3w = oh .

Since all solutions lie on circles in the wu,v plane when €

it is natural to change coordinates again to polar coordinates.

u=rcosé x = r cos(6-3w)/(ah)
v=rcosé y = r cos{6+iw)/(ah)
If we let w = r2, then the differencewgqggﬁigg,ﬁbz)’bééomes
Ew = w + €hR(w,0) ;

E6

6-w + €h8®(w,6)

0,

(18)

(49)

where R and © are 2r-periodic in 6. For the Van der Pol equation (4k),

we have"

2 2 1 2 |
R(r )e) = R(r ,e’h,E) = —é- {(2-1’] )x'2y+ehf(x;y,h,E)]f(x,y’h,e)
h
1
9(1‘2,9) = ®(r2,9,h,e) = -]e-"-ﬁArctan ef(x,y,h, €)cos(6-5w)

r+€f(x,y,h,€)sin(6-5w)

(50)

where the arctangent is taken such that -3m $ Arctan (x) iw. Notice that © J




is continuous and bounded in € as € -0 even though there is a 1/6

coefficient on the arctangent. It is also easy to show that both R and ©
are continuous and remain bounded as h —» 0 despite the 1/h2 end 1/h
coefficients since the formulas for x and y in terms of r,0, and h are
given.by (48).

In the difference equation (49) we can look for either of two things:

1) a solution for w and 6 which satiSfies w(t+T) = w(t) and
0(t+T) = 6(t) + 2r. This represents a T-periodic solution of the difference
equations (45) and (47). The great difficulty with this method is that T is

not known a priori since it will be, in general, a function of € and h.

2) a parametric representation for w in terms of 6 which is
2r-periodic and continuous in 6 such that one solution of (49) is 6 = (%)
and w = w(6(t)), i.e., an invariant manifold which is a closed curve in the
u,v or the x,y plenes. This is what is used in practice since, in computing
solutions of Van der Pol's equation (b4k4) numerically, é periodic solution is
"found" when the numeric solution displays such a closed curve. -The problem
here 1s to show that such an invariant manifold exists and to compare it to the
limit cycle of (Lb4).

' The difference equation (49) looks a lot like the difference equation
studied by Moser [11] if we write ©® as the sum of its average value Qo and

the remainder €., = 6 - 86.

1

1 ar
8 (w,h,€) = = foe(w,e,h,e)de .

Unfortunately, one condition Moser requires is that E@O/Bw 2 1 and,since

£(x,y,h,€) 1is odd in x end in y, we have @, =0 identically in w,h,e.




Thus, the work done by Moser does not apply here.
Halanay [9] developes a theorem which can be applied to this problem
| after a slight modification. This theorem, Theorem 4 in Halanay [{9], is re--

stated here without proof.

THEOREM 9: On Existence of an Invariant Manifold. Consider the difference
equation (51) where y € En, 6 is a real number, and Y, and

) are 2r-periodic in 8.

Ey

Yo(t; y) + €Yl( t,v,6, €)

. (51)
8 + aft) + €®(tJY:e:€)

EQ

Assume there exists positive constants H, Kl,u, and q with 0<q<1 such

that, for all t 2 tos |y| sH, ana 0s6s2, Yo, Y, and © have continuous

1
first partial derivatives with respect to y and 6 and

dY | ‘
(W) 1=2 (59l 5 x,, uz—ju,y,e,e)n <K, ug‘ju,y,e,e)n 5 K,

y
. oY, oY _ u
(2) ll— (t,5)) - — (t,3:) = K [lyy-v,l
oy oy
oY. Bxl .
(3) " el:ylye)'_‘(eg)YQ:e)" s
oy oy

17,8

o) o)
(4) HS;(Gl,yl,€)-S;(92,y2,€)ﬂ Ky(lly-v,ll 4l 0,-6,01")

(5) Y(t,0) =0
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oY

Yy

then

t-to
lzto)l s K © late)l

/

for all t 2 to".’ oo T
Then, for |e€| small enough there exists a function p(t,8), con-
stants ! = £(€) end L = L(€), continuous and monotone in €, such that

£(0) = 1{(0) and f(€) >0, L(€) >0 for € #0 and

a) lin(t,0)l = £(¢)
v)  |n(t, 61) -p(t, 62)“ s 1(¢)] 91'92‘
c) 1If uybﬂ s 2(€) then

(o]
ly(tst,,¥,,0,)-p(t,0(t5t 7,0 DI & Kja . Ty -p(ty,8)

d) If ¥, = p(to,eo), then y(t;to,yo,eo) = p(t,e(t;to,yo,eo))
e) This p(t,8) is unique and 2r-periodic in 6 '
£f) If Y, Y, and © are T-periodic in t, then so is p.

g) If Y, Y, and © are independent of t, then so is p.

l,
The set of points (t,y,0) where y = p(t,6) is an invariant mani-
fold of the system (56) (result d), it is never very far from the set (t,0,6)
(result a), it is Lipschitzien in 6 (result b), and solutions near y =0 |
approach the manifold exponentially as t - (result c).

For the difference equation (49), let

(6) Let A(t) = S-g(t,o) and, if z(t) is any solution of Ez = A(t)z,




, 1 2T .
Ro(w) = 5= fo R(w,6)de

and let Rl(w,e) = R(w,e)-Ro(w). Let w_ be a solution of Ro(w) =0 and let
W e wb+ y. Let Ra(w) denote the first derivative of R, with respect to w.

Then the difference equation (49) becomes (52)

-(;+€hR8(wb))y + €hR2(y,6)

- w+ eh@(wo+ ¥,6)

Ey

(52)
E6

where

Ra(y,e) = Ro(wb+ y)-Ré(wb)y + Rl(wo+ ¥,6).

This equation (52) is of the form of equation (51) with the matrix
A(t) =1 + ehRé(wb). If ehRé(wo) < 0, then the conditions of Theorem 9 seem
to be satisfied. The problem is that the estimate q is given by q = 1+€hRé(w)
and q 1 as € 20 or as h —»0. Since the proof 6f Theorem 9 depends on
forming a contraction mapping where the contraction constant is « = eK/(l-q)
for some K > 0, we see that this theorem cannot be really applied to this
problem. . )

Try letting w = p + €hu(p,6,€). Then the difference equation (L49)

for w becomes (53)

Ep-p+€(u(Ep,E6,€)-u(p,Ef,€)) = ehRo(p,O)-eh(u(p,Ee,e)-u(p,e,e)-

R,(p,8,¢))
(53)

+ eh(Ro(p+eu,e)-Ro(p,O))+€h(Rl(p+€u,8,e)-Rl(p,G,e))




where Ef is the function of 6,€, and w = p+€u given in the second equation
of (49). Since R, and R, are continuous in all their arguments, there is
some continuous monotone function &(€) with 8(0) = 0 and: 8(€) >0 for

€ >0 such that

| R (p+eu, €)-R (p,0)| = &(e)

| R,(p+eu,6,€)-R,(p,6,¢€)| = &¢)

Furthermore, we can choose h as a function of p,8,€ such that (see Lemma 12)

u(p,E9,€)-u(p,9,€)-Rl(p,9,€) = - €u(p,9,€) . (5"")
and _ 1

€| u(p,6,¢)| = 8(¢) .
Thus, (53) becomes (55)

Ep - p + €(u(Ep,E6,¢€)-u(p,E9,¢€) (55)
= GhRo(p,O) + ehRg(P)eye) -

where

le(P:9:€)| = 38(€) -0 as € =0,

Since u satisfies (54), we get that

oR

du_ D 1 dui
-a—u(p,Ee,e) - 'a'B(Pye:e) - 5—-—(p,9,€) = - € 'a—u(p)e)e)

P | P P P




and that

e|%§(p,e,e)| s 8(e) 20 as € 0.

Thus, by the implicit function theorem, see [18] for example, there is a func-

tion H = H(p,y,9,€¢) such that H(p,0,6,€) = O and
Ep-p = €hR (p,0) + €hRys(p,6,¢) | (56)
is the solution of (55) for € small enough where

' R3(p,9,€) = RQ(P,G,e) + H(p,€hRo(p,O)+€mo(p,9,€),E9,€)

|R5(p,6,e)'| s 8,(¢) »0 as € 0. B , (56')

Let p, bea root of Ro(p,o) =0 and let p=p+ v. Then the

difference equation (56) becomes, in terms of v,

_ Ev = (I+ehR!(p ,0))v + eth(v)'+.ehR3(po+ v,8,¢€) (57)
where
Rh(V) = RO(PO"' v,0) - Ré(Po,O)V (57*)
and there is some &,(]v|) >0 for |v] >0, 8,(|v]) 0 as |v] -0, and

IRy 5 (v 8(I4]) -

If none of the eigenvalues of' Ré(po,o) lie on the imaginary axis,
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then there is some €.h, >0 such that, for 0 < €h < elhl, none of the eigen-
values of (I+ehRa(pb,O)) lie on the unit circle and, from Theorem 5, there

is a continuous linear operator L: B - B such that v = Lf 1is the unique
bounded solution of Ev = (I+ehRé(po,0))v + f. There is some constent K >0

such that

K
sl = e -
We are interested in a fixed point of the non-linear operator N: B » B
N(v) = L(ehRi(v) + etRs(p + v,6,€))

We see that, since'ﬁe have the inequalities (56') and (57'), we can choose the

set 8 = (veB: ||v| = &), i.e., 8, and h as functions of € for € small

enough so that N' is a contrﬁction mapping qf S, hence N has a fixed point

v . Sinée R5 is ‘2w-periodic in 6, this fixed point wiil be 2N-p¢riodic 1h
0.

B /
These results are summarized in the following theorem.

THEOREM 10 Consider the difference equation (49).

Ew

w o+ ehRo(W’E) + eth(w,e,e)

E =0 - w+ ehGKW,e,e)'

where Ro and R, have continupus first partial derivatives with respect to w

1

and

(hg)

|




if
R,(w,6,€)d9 = 0.
2r o L7

If LA is & solution of Ro(wb’o) = 0 and none of the eigenvalues of the

matrix R!(w_,0) lie on the imaginary axis, then there is an €, >0, and

1l
0 < h < h(€), then

functions h(e) and w(6,€,h) such that, if 0 <e < €
w(6,€,h) represents an invariant curve of (49). Also, h(€) -0 as € -0
and w(6,€,h) W, as € =0,

This is a generalization of Halanay's theorem [9] which is given

here as Theorem 9.

If the application to Van der Pol's equation (L4), we have

' 2
RO(W,O) = dw(4-h"-w)

. 2
Ré(w,o) L(4-n"-2w)
‘ 2 ' ’
The two roots of Ro(w,o) are w, =0 and w, = L.n™, For w = Wi Ré(wl,o) =
%(h-hz) >0 and we have an invariant curve w(6,e,h) = 0. For w« oy
Ré(wz,o) = -%(h-ha) < 0, and we have an invariant curve w(6,e,h) & h-ha. Thus
we see that the central difference analog (U45) to the Van der Pol equation (L)

has the same qualitative behavior (w is the square of the amplitude).




SUGGESTIONS FOR FUTURE RESEARCH

The theory of difference equations as presented here is very in-
complete, More work needs to be done with finding periodic solutions in critical
cases,vixe., in cases when the homogeneous difference equation also has perioéic
solutions. This includes the case for Ex = x + f, considered here but when
the period T 1is an irrational number. This also includes the cése for
Ex = Ax + £ where the matrix A has eigenvalues on the unit circle which mey

or may not have simple elementary divisiors or where the matrix A is a T-

periodic function of +t,

More work also needs to be done in studying the behavior of various
difference analogs to differential equations which are not considered here. For
example, what would a graph of the regions of behavior of the Kutta-Simpson
analog for X +2ckx + x =0 plotted as in Figure 3 look like? How do the
discreprencies affect the usefullness of these methods for finding periodic
solutions of a differential eduation. If thg differential equation has a
periodic solution wﬁich is exponentially stable, can Theorém 10 be applied to
the difference analog to show that it has an invariant manifold which is close
to this periodic solution? If an invariant manifold of the difference analog
is found which is exponentially stable, does this imply that the differential
equation has a periodic or almost periodic solution near this manifold, These
are all questions which need to be answered. There are many more questions not

listed here which need to be answered.
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